Algorithm for Clustering Gene Expression Data with Outliers Using Minimum Spanning Tree

نویسنده

  • S. John Peter
چکیده

Microarrays enable biologists to study genome-wide patterns of gene expression in any given cell type at any given time and under any given set of conditions. Identifying group of genes that manifest similar expression pattern is important in the analysis of gene expression in time series data. In this paper multidimensional gene expression data is represented using Minimum Spanning Tree (MST). A key property of this representation is that each cluster of the expression data corresponds to one sub tree of the Minimum Spanning Tree, which converts a multidimensional clustering problem to a tree partitioning problem. Each node represents one gene, and every edge is associated with a certain level of pheromone intensity, densities and the co-expression level between two genes. MST-based clustering method is presented for finding cluster in gene expression time series data using new dissimilarity measure namely DMk. It is effective in classifying DNA sequences with similar biological characteristics and discovering the relationship among the sequences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ant-MST: An Ant-Based Minimum Spanning Tree for Gene Expression Data Clustering

We have proposed an ant-based clustering algorithm for document clustering based on the travelling salesperson scenario. In this paper, we presented an approach called Ant-MST for gene expression data clustering based on both ant-based clustering and minimum spanning trees (MST). The ant-based clustering algorithm is firstly used to construct a fully connected network of nodes. Each node repres...

متن کامل

Minimum Spanning Tree-based Structural Similarity Clustering for Image Mining with Local Region Outliers

Image mining is more than just an extension of data mining to image domain. Image mining is a technique commonly used to extract knowledge directly from image. Image segmentation is the first step in image mining. We treat image segmentation as graph partitioning problem. In this paper we propose a novel algorithm, Minimum Spanning Tree based Structural Similarity Clustering for Image Mining wi...

متن کامل

A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem

The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...

متن کامل

Clustering Gene Expression Data with Memetic Algorithms based on Minimum Spanning Trees

With the invention of microarray technology, researchers are capable of measuring the expression levels of ten thousands of genes in parallel at various time points of the biological process. During the investigation of gene regulatory networks and general cellular mechanisms, biologists are attempting to group genes based on the time-depending pattern of the obtained expression levels. In this...

متن کامل

An Efficient Data Cleaning Algorithm through Minimum Spanning Tree for Data Mining

Detecting outliers in database (as unusual objects) using Minimum Spanning Tree is a big desire. It is an important task in wide variety of application areas. In this paper we propose Minimum Spanning Tree based algorithm for detecting outliers. The outliers are detected in the data set based on weight function value (MSTWF). If the noticeable changes occurred in the weight function value, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014